�Guide to Hacking Frontier: First Encounters

by George Hooper

Disclaimer

 This information is presented free without compensation of any kind by the author of this guide. It represents the views of the author, and is not connected in any way with the authors of the game, or to any of the companies which produced or distributed the game. None of the aforementioned persons or companies are responsible for the use of this information by any user, or any loss by any user as a result of using the information contained in this guide.

�

	Hacking

 Hacking is the term used to describe the direct editing of a computer file to produce different results in the execution of that file. It has also been used in the news media to describe accessing remote computer sites via illegal means. Thus a negative connotation has been attached to the word, and this even filters down to the hacking of a game file, which is also described as cheating in some circles.

 In the professional computing world, a hacker is a “good” guy or gal with a respectable talent. In any profession, desire for knowledge, and hard work, are the tools to be successful. If you want to be an auto mechanic, you take a course in the subject where you will take apart an engine. Then learn all you can, make some modifications, put it back together, and see how it runs. So by “hacking” an engine, you become a good mechanic. This scenario applies to all endeavors, including the computing industry. Rest assured that the best programmers in the world are also very good at hacking.

 In the case of Frontier: First Encounters, we will be hacking the FIRSTENC.EXE file. However, the basic hacking information contained in this guide will also apply to many other games as well.

 Frontier: First Encounters is programmed in several computer languages including assembly and C++. Computers in their most basic form use voltage levels in a circuit. For a given computer, the number one could be represented by 5 VDC, and the number zero would equal 0 VDC. Humans have a lot of difficulty in conversing with these numbers and voltages, so computer languages were developed to translate human ideas into voltages that the computer understands.

 Assembly language is the lowest form of translation from human to computer. It basically deals with ones and zeroes, which the computer converts to voltages. It is difficult to understand by the programmer, so assembly editors with special routines are used to produce the raw assembly language file, called the object file. During this process a file, called the source code, is generated by the programmer. This file has all the tags and special routines identified in plain english that a programmer can understand. The programmer works with the source code file to make the program, then uses the information in the source code to compile the object code file that the computer will run.

 So why all this bother for an object code file? The answer is speed! The object file will execute faster than any other type of file one can make, and that is essential to the efficient operation of any program.

 For our purpose, we do not have the source code file, so we will need a program to edit the FIRSTENC.EXE object file. This is accomplished by loading the FIRSTENC.EXE file into a hex editor, which is supplied with this guide. Hex editors are widely available as freeware and shareware on BBSs and the Internet. They are similar to a word processor used to edit a text file. By editing, you can access the coding at specific addresses in the file.

�

	Number Crunching

 We will be changing numbers, call code or bytes, at specific addresses in the FIRSTENC.EXE file using hexadecimal numerical entries. This sounds pretty fancy, but it is actually fairly simple. The following list shows some comparision values for decimal, hexadecimal, and binary numbers.

 Dec Hex Bin Dec Hex Bin Dec Hex Bin

	0	00	 0	 8	08	1000	16	10	10000

	1	01	 1	 9	09	1001	17	11	10001

	2	02	 10	10	0A	1010	18	12	10010

	3	03	 11	11	0B	1011	19	13	10011

	4	04	100	12	0C	1100	20	14	10100

	5	05	101	13	0D	1101	21	15	10101

	6	06	110	14	0E	1110	22	16	10110

	7	07	111	15	0F	1111	23	17	10111

 Notice the patterns within the numbers. Decimal numbers, the ones we use every day, repeat their pattern every 10 units. Hexadecimal repeats every 16 units. And the Binary repeats every 4 units.

 Also note the units of display. Decimal numbers increment from 0 to 9, then add a 1 in front of a 0 for the next higher unit. Hexadecimal increments from 00 to 0F, then adds a 1 in front of a 0 for the next higher unit. Think of binary as a series of switches being turned on and off with 1 = on and 0 = off. When the right side two switches are on, the next higher number is added by turning them off, and adding a 1 to the front of the unit (11 to 100). Replace the switches with a voltage value, and you can now understand how a computer stores a numerical value.

 Each of the hex numbers in the above table is called a byte. Put two of them together, for example 12 0B, and you have a 2 byte code. We will deal with 1, 2, 3, and 4 byte codes. Each of the ones and zeros in a binary number is called a bit. We will use 8 bit binary numbers, which has a total of eight ones and zeros, for example 1100101.

 Decimal is what humans use to understand mathematics. Binary is what computers use to run calculations. Hexadecimal is a go-between that humans use to program numbers into a computer in such a way that the computer can easily process it. All you have to do is convert the decimal number to a hex number, and enter it into the code. As the numbers get larger, it can be difficult to convert manually as per the following examples:

	100 = 64	1000 = 03 E8	10,000 = 27 10	16,777,215 = FF FF FF

 The easiest solution is to purchase an inexpensive calculator (or spend a little more and get the Hewlett Packard 42S, the one the pros use) which will convert between decimal, hexadecimal, and binary. You then input your 1000 tons of furs and get the hex value of 03 E8. Simple.

 Well, not quite. The units 03 and E8 are called most and least significant bytes respectively, and a specific order is required to enter then into the address of the file. The reason for this is that humans read numbers starting with the largest value to the smallest value, but computers read them starting with the smallest value. For a 2 byte code, convert a 1 byte hex value to a 2 byte hex value, then reverse the pair of bytes. For a 4 byte code, convert the 1, 2, or 3 byte hex value to a 4 byte hex value. Reverse each left and right pair of bytes, then reverse the completed pairs, and type them in. Hard to explain, but simple to see. Compare the following columns of numbers to see the process:

	 Dec Hex	 4 Byte	 Reverse

	 10	 0A	 =	00 00 00 0A	0A 00 00 00	Examples are for a 4 byte code. For a

	 1000	 03 E8	 =	00 00 03 E8 	E8 03 00 00	2 byte code, convert a 1 byte to a 2 byte,

	10,000	 01 4C 08	 =	00 01 4C 08	08 4C 01 00	if required, then reverse the single pair.

	85,000 05 10 FF 40	 =	05 10 FF 40	40 FF 10 05	e.g.: 0A = 00 0A = 0A 00

 The first column shows the decimal number 10. It’s hex equivalent is equal to 0A, a 1 byte code. We need to use it in a 4 byte code in the file, so add three 00 bytes in front of this code to convert it to a 4 byte. You now have two pairs of bytes, 00 00 and 00 0A. Reverse the first pair and you get 00 00 (looks the same, huh?). Reverse the second pair and you get 0A 00. Now you have 00 00 0A 00. Finally, swap each pair and you get 0A 00 00 00. Follow this procedure for the decimal 85, 000 to see the reversals.

 For a two byte number the procedure is a lot simpler. Again using the decimal hex 0A, add a 00 byte in front of it to make it a 2 byte code, 00 0A. Reverse the pair and you get 0A 00.

 The coding can use 1, 2, 4, and 8 (we will not use 8) bytes of information. This refers to the number of entry spaces the program uses to store one number. The more spaces, the larger the number that can be entered into it per the following list:

 	Byte	Entry Spacing	Hex Range	Dec Range

	 1	 00	00 - FF	0 - 255

	 2	 00 00	00 - FF FF	0 - 65,535

	 4	00 00 00 00	00 - FF FF FF FF	0 - 4,294,967,295

 Spacing is determined by the biggest number to be entered. Missiles never exceed 10, so only a 1 byte code is needed. Credits can reach into the millions, so a 4 byte code is needed.

�	Entering a Value

 A money value will have 4 byte code = 00 00 00 00. The program divides the input value by ten to get the fraction of the number. So if you started a game with 100.0 credits, you need to have a decimal value of 1000 entered into this address, which is equal to 03 E8 in hexadecimal. Reverse the bytes, and you will enter E8 03 00 00 into the 4 byte code.

�	And the Hacking Begins ...

 The Hex Addresses listing will give the hex addresses for all of the missiles and ships used in Frontier: First Encounters. Three CD-ROM and two 3.5in disk versions are included on the list.

 The Hexadecimal Codes listing will give all the byte strings for each of the missiles and ships in the game. These codes will always be the same, no matter what version, and specific address, you will use.

 Each of the listed addresses is the starting address for the first bytes below, labeled F-THR. The next bytes follow in succession to this address. The First line denotes xx where information will be edited. The second line is the actual hexadecimal information for a Saker Mark III. The third line is the decimal information as is used in the game.

 NA

 Address F-THR R-THR GM SM FLM IC COST ZOOM ID CW MP DV

 xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx 40 xx 00 xx 00 xx

 08C338 B5 2C B6 EA 02 00 1C 00 17 00 2B 00 55 00 1C 40 01 00 02 00 02

 11445 60086 2- 0- 28--- 23--- 43--- 85--- 28 1- 2- 1

 First, find out which version of the game you are playing by running the game, and watching the introduction animation. When the Thargoid ship appears (the eight sided upside down pie plate) type SHIFT-V. Compare this to the version address information in the Hex Addresses listing. If the versions match, then you have the addresses. If your version is different, you can still find the addresses for your version by reading the Searching for an Address section. Once you have the correct address, continue this section using your new address.

 Save a copy of the FIRSTENC.EXE file to another directory. You WILL make mistakes at times and being able to reload the original file will resolve problems, and keep your original game intact. Now copy the HEXED.EXE file to your FIRSTENC directory. Working in DOS, go into the FIRSTENC directory, and type:

	HEXED FIRSTENC.EXE

(Note: Except where noted, all typing is in lowercase. I display them in uppercase in this guide for visual clarity.)

 The editor will load the FIRSTENC.EXE file and display it on the screen. The blue column on the left slows the addresses currently being displayed, starting with 000000. The blue row at the top (00 - 0F) is each address number for the hex bytes below it. So Hex address 000004 would be 5 bytes to the right of the address 000000, and underneath the 04 address.

 Type Goto Page (F3), then enter the first four digits of the ship address. For a Saker Mark III in the English CD-ROM Remastered 1.1 version, this will be 08C3, and type ENTER. The display will now show the addresses starting at 08C300. The starting address for the Saker is at 03C338, which will be 9 bytes to the right of address 03C330, underneath the 08 address. Bytes 08 and 09 will read B5 2C. Reversing this equals 2C B5 = 11445 decimal, which the program uses to calculate a forward thrust of 21.1g.

 Type over B5 2C with AB 7E (spaces not used). The ship now has a 60g forward thrust = 32427 decimal = 7E AB hex.

 Use the Hexadecimal Codes information to change the values for the Saker to your liking. If you make a mistake, and are not sure what to do, type F10 then N to exit the editor without saving the EXE file. Then start over.

 When completed, type F10, then Y to save the FIRSTENC.EXE file, and exit the editor. Then run the game and check the Saker Mark III statistics. If the game crashes, you typed a byte into the wrong location. Copy the original EXE file to

the game directory, and try again.

	Searching for an Ad�dress

 Locating a specific address requires searching for a known and hopefully unique hex code. The Saker has a Crew of one, with a hex value of 01, and you could search for the value 01. However, this value is used in the program thousands of times, and your search results would not know which 01 was the correct value. Therefore 01 is not unique enough for a reliable search.

 In the Hexadecimal Codes Listing, The first 12 bytes of the Saker ship information is a very large number in itself. Thus it is highly unlikely that this string of hex numbers would be repeated more than once in the entire EXE file. This 12 byte string is as follows:

			B5 2C B6 EA 02 00 1C 00 17 00 2B 00

 Set the hex editor to address 0000, activate the Search Hex function (F6), and type in the above hex string (without spaces), then press ENTER. The editor will search and find the string, with the cursor to the right of the 12 byte string (the 13th byte). Compare the following bytes to the rest of the bytes in the entire 21 byte Saker string. If they match, you have found what you need. If they do not match, then you have made an error in the entry of the string (happens all the time). Try again.

 Write down the address of the first B5 byte, per the address at the left, and adding the one byte address at the top of the screen. Compare this address to the previous addresses for the Saker in the Hex Address listing. If one is the same, then you have that version of the game, and no further calculations are required.

 Pick a Saker address in one of the Hex Address listings. Using your hex calculator, subtract the new address from the listed address. Let’s say the result is a hex value of E3. You now know that the new Saker address is E3 removed from the listed Saker address. The E3 value is also correct for ALL THE SHIPS on that specific list! You can now calculate the addresses of all the other ships in your version of the game.

 As E3 was a positive value, then the listed address is of higher value than the new address. Subtract E3 from all the other addresses to get the new ones.

 If E3 was a negative value, then the listed address is of lower value than the new address. Drop the negative sign, and add E3 to all the other addresses to get the new ones.

Another trick for locating a ship address file is by searching for the unique ship ID. As the Saker has an ID of 1C, then searching for a few bytes, say 00 1C 40 01, around this byte will find the ship

 As you can see, the search function is a very powerful tool for locating valuable data, and is the foundation for hacking

any program file.

�	Additional Tools

 The right side of the hex editor displays the ASCII text in the file. The addresses at the top are from 0 to F. By using the Search ASCII (F5) function, you can search for a keyword, like “Thargoid” (observe correct casing). This will find and display a lot of information written in plain english (or french, german...whatever your version is) on the missions of the game.

 You can also change the some of the english text in the file, as long as the new characters directly replace the old ones. Here is a list of ASCII to Hex Codes.

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D

 ! " # $ % & ' () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < =

3E 3F 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A 5B

> ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [

5C 5D 5E 5F 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79

\] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y

7A 7B 7C 7D 7E

z { | } ~

	Hacking the Sta�rtup Ships

 So you thought that was it? Not a chance! You can edit many more sections of the game, including the two startup ships, ranks, ratings, and so on. You will also be dealing with bitmapped numbers. As you are aware, a byte is a single hex number, from 00 to FF, that you have been entering into the code. A byte is composed of eight bits. This is different from the hex numbers, so let’s see how to use them.

 Remember that binary numbers are like on/off switches, so only a one or zero will be used. The following list shows the items available for Byte 1. Byte 1 is an 8 bit binary number we enter into the 4 byte equipment code as a 1 byte hex value. Confused? Take a look at the following chart.

	Binary	1	1	1	0	0	0	1	1	= E3 Hex

	Bit	1	2	3	4	5	6	7	8		 Bit	 Item - Byte 1

�			1	Auto Targetter

			2	Combat Computer

			3	Navigation Computer

			4	Transmission Jammer

			5 	"StowMaster fighter"

			6	Military Cameras

			7	Auto Refueller

			8	Laser Cooling Booster

 In this example we want items 1, 2, 3, 7, and 8. We do not want items 4, 5, and 6. Put a 1 for the items we want in the 8 bit binary row above each bit. Put a 0 for the items we do not want in the same manner. The result is an 8 bit binary number = 11100011. Put this number into your binary calculator, convert it to hex, and the result will = E3, a 1 byte hex number.

 The equipment address has four bytes, with byte 1 being the one on the left, as follows. Enter E3 at the byte one position, and you will have the equipment installed on your ship for the byte 1 code. Repeat this for the bytes 2, 3, and 4 codes.

	Byte1	Byte2	Byte3	Byte4

 	 E3	 00	 00	 00

 Ok you want all the items! The 8 bit binary number will = 11111111, which will = FF in hex.

 In the listing on the next page, note that Byte 3, bits 7 and 8, are both Cargo Bay Life Support. You will want to activate bit 7, as bit 8 does not display properly in the game. Byte 2, bits 2 and 4 are not used.

 The startup addresses are spread out, as opposed to all the bytes being together like the ship addresses. They are usually within one page of the editor display, so this is not a big problem. However, the distance value you calculated for the ship addresses does not always match with the startup addresses, so a little searching may be required. A search for the 4 byte equipment code will work. Then perform the same distance calculation using the address for the equipment, and you will have the distance value for the startup addresses.

 Changing the original startup codes with the codes in the listing below them will give you the equipment you desire. A startup ship only has one laser position, even if your ship has more than one. You can specify one laser, then buy others when you start the game.

 Changing the ship type ID with another ID will give you that ship when you start the game. If you also changed the ship specifications, then the modifications will also be present in the new ship. Note that the startup values, like the drive type, override the original values in the ship specifications.

 The Fuel Onboard and cargo space used should be the same to display properly in the game.

 The equipment weight value is subtracted from the internal capacity of the ship. It is the weight of all starting equipment, regardless of the actual weight. So, if you change it to 00, then you would get all the startup equipment, and still have your original internal capacity.

 The rank and rating addresses will change the display value only. You still have to get the points to move up in the military mission assignments.

FRONTIER - FIRST ENCOUNTERS STARTING INFORMATION

3.5in Disk (English Release 1.1 - Remastered)

	Item	Ross 154		Hex	Gateway	Hex		Notes

	Starting Credits	03118F-92	E8 03 00 00	031223-26	10 27 00 00		100 & 1000 (x/10 = Credits)

	Ship Color	031194		27	03120D	27		23-29 no effect on Saker

	Ship ID	031199		17 Eagle II	031212	1F Saker III		Ship Type

	Drive	0311AA		02	031258	02		-1 = Hyperdrive

	Weapon	0311B1		88	03122D	88		1MW Pulse Laser

	Equipment	0311B8-BB	00 00 24 40	03125F-62	20 00 24 40		Bitmapped

	Equipment Weight	0311D0		10	031247	10 Equip+	Drive+Laser+Missiles

	Missile 1	0311C2		82	031269	82		KLT60 Homing Missile

	Missile 2	0311C9		82	031270	82		KLT60 Homing Missile

	Fuel onboard	0311D8-9		01 00	031235-36	01 00		1 ton

	Cargo Space USED	0311E0-E3	01 00 00 00	03123D-40	01 00 00 00		1 ton

	Missiles	Hex	Weapons	Hex	Drives		Hex	Drives Hex

	Mine (Dummy?)	80		1MW Pulse Laser	88		 - None - 		00	Class 1 Military	0A

	XB74 Proximity Mine	81		5MW Pulse Laser	91		Interplanetary		01	Class 2 Military	0B

	KLT60 Homing Missile	82		30MW Mining Laser	9A		Class 1		02	Class 3 Military	0C

	LV111 Smart Missile	83		1MW Beam Laser	A0		Class 2		03	Class 4 Military	0D

	NN500 Naval Missile	84		4MW Beam Laser	A9		Class 3		04	Class 8 Thargoid	0E

	MV1 Assault Missile	85		20MW Beam Laser	B3		Class 4		05	Colors

	MV2 Assault Missile	86		100MW Beam Laser	BC		Class 5		06	23 dk BLU,24 dk BLK

	Thargoid Missile	87		Small Plasma Accel.	C6		Class 6		07	25 RED, 26 BRN,

	Mycoid Missile	88		Large Plasma Accel.	CF		Class 7		08	27 BLU, 28 GRN,

	Nuclear Missile	89		Thargoid Laser	D5		Class 8		09	29 GRN/YEL

Note: Although several values would display an armament item, only one value would place it on the ship's upgrade page. All items which could normally be purchased were verified. One exception was the mines which display in the battle console, but were not listed on the upgrade page.

Bit	Item - Byte 1	Bit	Item - Byte 2	Bit	Item - Byte 3	Bit	Item - Byte 4

1	Auto Targetter	1	1 MW Pulse Laser	1	Naval E.C.M.	1	Hull Auto Repair System

2	Combat Computer	2	Empty		2	Radar Mapper	2	Atmospheric Shielding

3	Navigation Computer	3	Tracking Device	3	Auto Pilot		3	Cargo Scoop Conversion

4	Transmission Jammer	4	New Equipment 4	4	Fuel Scoop	4	Energy Booster Unit

5 	"StowMaster fighter"	5	Chaff Dispenser	5	E.C.M.		5	Escape Capsule

6	Military Cameras	6	Tractor Beam Cargo Scoop	6	Scanner		6	Energy Bomb

7	Auto Refueller	7	Missile Viewer	7	Cargo Bay Life Support	7	Fighter Launch Device

8	Laser Cooling Booster	8	Inter-species Translator	8	Cargo Bay Life Support	8	Hyperspace Cloud Analyzer

Elite Rating	Address	Code	Points	Elite Rating	Address	Code	Points

Elite	0C03DD-E	70 17	6000	Average	0C03F1-2	20 00	32

Deadly	0C03E1-2	B8 0B	3000	Below Average	0C03F5-6	10 00	16

Dangerous	0C03E5-6	E8 03	1000	Poor	0C03F9-A	08 00	8

Competent	0C03E9-A	80 00	128	Mostly Harmless	0C03FD-E	04 00	4

Above Average	0C03ED-E	40 00	64	Harmless	0C0401-2	00 00	0

Military Rank	Address	Code	Points	Military Rank	Address	Code	Points

None - Outsider	0C0460-1	00 00	0	Lieutenant - Viscount	0C047C-D	61 09	2401

Private - Serf	0C0464-5	01 00	1	Lt Commander - Count	0C0480-1	00 10	4096

Corporal - Master	0C0468-9	10 00	16	Captain - Earl	0C0484-5	A1 19	6561

Sergeant - Sir	0C046C-D	51 00	81	Commodore - Marquis	0C0488-9	10 27	10,000

Sergeant Maj - Squire	0C0470-1	00 01	256	Rear Admiral - Duke	0C048C-D	31 39	14,641

Major - Lord	0C0474-5	71 02	625	Admiral - Prince	0C0490-1	00 51	20,736

Colonel - Baron	0C0478-9	10 05	1296

	A Super Saker M�ark III

 The following information is everything you need to build a Super Saker Mark III. This requires editing both the standard ship file, and the startup file. All the hex information is given, so the only calculation you might have to make is for the hex addresses of your particular version.

 After editing of the EXE file, start the game, and complete the ship by purchasing the remaining items (not ALL equipment items are bitmapped), then save the ship.

 Recopy the original FIRSTENC.EXE file to the FIRSTENC directory. This will overwrite your hacked file, and reset all EXE file parameters to their original settings. Load your new ship, and you should have all the specifications as below. You will now have a Super Ship that plays on the stock version of the FIRSTENC.EXE file.

	Specifications

	Starting	 Credits		50 million				Missiles			2 Thargoid Missiles

	Ship Type		Saker Mark III				Missiles Pylons		2

	Hull Mass		6t					Cabins			100

	Fuly Laden Mass	28t					Shields			1000

	Internal Capacity	14,816t					Chaff			50

	Cargo Capacity		10,000t					Crew			1

	Retro Thruster Acc	60.1g					Cost			43k

	Main Thruster Acc	60.1g					Drive			Class 4 Military

	Guns			1 Thargoid Laser (front)			Fuel onboard		400t Military

	Gunmounts		2 (front/rear)				Jump Range		4285.71 ly

	Equipment

	Cargo Bay Life Support		Escape Capsule		Navigation Computer

	Scanner			Energy Booster Unit		Combat Computer

	Fuel Scoop			Cargo Scoop Conversion	Auto Targetter

	Auto Pilot			Atmospheric Shielding		Inter-species Translator

	Radar Mapper			Hull Auto Repair System	Missile Viewer

	Naval E.C.M. System		Auto Refueller			Tractor Beam Cargo Scoop

	Hyperspace Cloud Analyzer	Military Cameras		Chaff Dispenser

	Fighter Launch Device		"StowMaster" fighter		Tracking Device

	Energy Bomb			Transmission Jammer

	Programming Info (English CD-ROM v1.1 - Remastered)

	Item		Description		Address	Hex Code

	Credits		52,468,680		031457-A	D0 15 46 1F

	Ship Type	Saker III		031446		1F

	Drive		Class 4 Military		03148C		0D

	Weapon	Thargoid Laser		031461		D5

	Equipment	Bitmapped		031493-6	FE 2F F6 FF

	Missile 1	Thargoid Missile	03149D		87

	Missile 2	Thargoid Missile	0314A0		87

	Hex Coding at address 08C338

 NA

 F-THR R-THR GM SM FLM IC COST ZOOM ID CW MP DV

 AB 7E 55 81 02 01 1C 00 E0 39 2B 00 55 00 1C 40 01 00 02 00 02

 32427 33109 02 01 28--- 14816 43--- 85--- 28 01 02 02

Note that the drive value in the startup address, and not the ship address, is used to select the drive for the startup ship.

If you do not mind running a modified FIRSTENC.EXE file, then after reloading the original file, change the FLM above to 01, which will give you a jump range of 120,000 light years when the game performs the calculations.

	Hacking the Equipment� Items

 The specific equipment items in the shipyard equipment list can also be modified. This is very useful should you choose a startup ship with 4 gunmounts, and want to put Thargoid lasers at all the positions. Change the Thargoid laser display code from FF to 4E, and the item will now be available for purchase in the shipyard. Use the Equipment Listing table supplied with this guide to obtain the codes. Again, a little searching may be required for your specific addresses, however once found, all the codes will be the same.

�	Additional Tips

 Making a few batch files using the Windows notepad editor makes editing the file and running it much simpler, with a lot less keystrokes to accomplish the task. Here are three useful examples.

HACK.BAT		FFH.BAT				NEW.BAT

echo off		echo off				echo off

cd c:\firstenc		cd c:\firstenc				cd c:\firstenc

hexed firsthac.exe	echo English Release 1.1		echo Overwriting modified file with original.

cd\			echo Loading Modified Frontier...	copy firstenc.exe firsthac.exe /y

cls			firsthac.exe				cd\

			cd\					c:

			cls					cls

 The original FIRSTENC.EXE file is in a separate directory called BACKUP. Two copies of this file are in the FIRSTENC directory. The first is a duplicate with the same name, and is used to overwrite the hacked copy. The second copy is renamed to FIRSTHAC.EXE, and is used for hacking.

 HACK will run the HEXED program and load the FIRSTHAC.EXE file into it. FFH will run the FIRSTHAC.EXE file and start the game using it. NEW will overwrite the FIRSTHAC.FILE with the spare copy, thus returning all the codes to their original settings.

 You can also make up a FFE batch file to run the FIRSTENC.EXE file. Then you can easily switch between the stock file and the modified file when starting the game.

�	In Conclusion . . .

 Typical scenario...You buy a game, play it, lose a lot, start getting good at it, and finally you win the game. What happens the next day? Typically you will not play the game. The real fun is in experiencing the game, getting good with the controls, and accomplishing a goal.

 With this guide, you now have the ability to circumvent the challenges in the game, and, as a result, could make a great game very boring. This would also be a waste of your hard earned money for a lasting value in entertainment. Because of this, it is recommended that you first play the game straight. Learn the moves, accept the challenges, and see what you can do. Then, when you are up against a wall you cannot get over, a few hex codes in the right place will help.

 The Super Ship can be used as a training tool. Say you are getting wasted every time in combat. Use the Super Ship to survive while you learn the best strategies for combat, then apply them to your straight ship. When you can take out the enemy without a hack, your confidence level will go through the roof! The Super Ship can also be used for sightseeing to all those far away systems that are impossible to get to during normal game play.

 By gaining an insight into assembly language programming, you will learn more about how computers and programs interact together. As a result, you will get a feel for when the program is acting up, or the computer is having problems. You will soon gain the confidence that you are running the computer, not the computer running you. This carries over to all programs, including the boring ones used at the workplace.

 So enjoy the hacks, but don’t forget to enjoy the game itself. You will double the entertainment value.

George Hooper

hooperh@ix.netcom.com

